[1]LV L, JIMENEZ K F, SEN A, et al. Evidence supporting a role for cocaine- and amphetamine-regulated transcript (CARTPT) in control of granulosa cell estradiol production associated with dominant follicle selection in cattle[J]. Biol Reprod, 2009, 81(3):580-586.
[2]张涛, 李富禄, 黄洋, 等. CART对FSH诱导的绵羊卵巢卵泡颗粒细胞雌激素分泌影响的研究[C]. 中国畜牧兽医学会动物繁殖学分会第十五届学术研讨会, 2010:304.
[3]SEN A, BETTEGOWDA A, JIMENEZ K F, et al. Cocaine- and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells[J]. Endocrinology, 2007, 148(9):4400-4410.
[4]SEN A, LV L, BELLO N, et al. Cocaine- and amphetamine-regulated transcript accelerates termination of follicle-stimulating hormone- induced extracellularly regulated kinase 1/2 and Akt activation by regulating the expression and degradation of specific mitogen-activated protein kinase phosphatases in bovine granulosa cells[J]. Mol Endocrinol, 2008, 22:2655-2676.
[5]SPIESS J, VILLARREAL J, VALE W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus[J]. Biochemistry, 1981, 20:1982-1988.
[6]JANIUK I, MYNEK K, WYSOCKI J. Identification and location of the cocaine and amphetamine regulated transcript (CART) in the abomasum of cattle[J]. Acta Histochemica, 2012, pii: S0065-1281(12)00119-5.
[7]KRISTENSEN P, JUDGE M E, THIM L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin[J]. Nature, 1998, 393:72-76.
[8]STANLEY S A, MUPRHY K G, BEWIEK G A, et al. Regulation of rat pituitary cocaine- and amphetamine-regulated transcript (CART) by CRH and glucocorticoids[J]. Am J Physiol Endocrinol Metab, 2004, 287:E583-E590.
[9]OHSAWA M, DUN S L, TSENG L F, et al. Decrease of hindpaw with drawal latency by cocaine- and amphetamine-regulated transcript peptide to the mouse spinal cord[J]. Eur J Pharmacol, 2000, 399(2-3):165-169.
[10]WOJTKIEWICZ J, GONKOWSKI S, BLADOWSKI M, et al. Characterisation of cocaine- and amphetamine- regulated transcript-like immunoreactive (CART-LI) enteric neurons in the porcine small intestine[J]. Acta Vet Hung, 2012, 60(3): 371-381.
[11]KUHAR M J, JAWORSKI J N, HUBERT G W, et al. Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets[J]. AAPS J, 2005, 7:259-265.
[12]VALLE E, MOORE S S, JANN O, et al. The bovine cocaine and amphetamine-regulated transcript locus: gene characterization and SNP discovery[J]. Anim Genet, 2005, 36(1):74-75.
[13]ZHANG C L, CHEN H, WANG Y H, et al. The polymorphisms of bovine cocaine- and amphetamine-regulated transcripts and their associations with cattle (Bos taurus) growth traits[J]. J Biosci, 2008, 33(3):365-370.
[14]YAMADA K, YUAN X, OTABE S. Sequencing of the putative promoter region of the cocaine- and amphetamine-regulated-transcript gene and identification of polymorphic sites associated with obesity[J]. Int J Obes Relat Metab Disord, 2002, 26(1):132-136.
[15]CHALLIS B G, YEO G S, FAROOQI I S, et al. The CART gene and human obesity: mutational analysis and population genetics[J]. Diabetes, 2000, 49(5):872-875.
[16]李爱民, 马云, 杨东英, 等. 鲁西牛ANGPTL6 基因的3 个多态位点与其生长性状的关联性分析[J]. 中国农业科学, 2012, 45(11): 2306-2314.
[17]WHEELAN S J, CHURCH D M, OSTELL J M. Spidey: a tool for mRNA-to-genomic alignments[J]. Genome Res, 2001, 11(11):1952-1957.
[18]KUMAR S, TAMURA K, NEI M. MEGA3: Integrated software formolecular evolutionary genetics analysis and sequence alignment[J].Bioinformatics, 2004, 5: 150-163.
[19]DENMAN R B. using RNAFOLD to predict the activity of small catalytic RNAs[J]. Biotechniques, 1993, 15(6):1090-1095.
[20]LIEW M, PRYORR, PALAIS R, et al. Genotyping of single-nucleotide polymorphismsby high-resolution melting of small amplicons[J]. Clin Chem, 2004, 50(7): 1156-1164.
[21]YE M H, CHEN J L, ZHAO G P. Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-you chicken[J]. Anim Biotechnol, 2010, 21:14-24.
[22]GUNDRY C N, DOBROWOLKI S F, MARTIN Y R, et al. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons[J]. Nucleic Acids Res, 2008, 36(10): 3401-3408.
[23]NEI M, ROYCHOUDHURY A K. Sampling variances of heterozygosity and genetic distance[J]. Genetics, 1974, 76(2): 379-390.
[24]NEI M, LI W H. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proc Natl Acad Sci USA, 1979, 76(10): 5269-5273.
[25]BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331.
[26]SHI Y Y, HE L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci[J]. Cell Res, 2005, 15(2):97-98.
[27]CHATTERJEE S, PAL J K. Role of 5′- and 3′-untranslated regions of mRNAs in human diseases[J]. Biol Cell, 2009, 101(5):251-262.
[28]ABANADES D R, RAMÍREZ L, IBORRA S, et al. Key role of the 3′ untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5′ untranslated region[J]. BMC Mol Biol, 2009, 10:48.
[29]JI Z, TIAN B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types[J]. PLoS ONE, 2009, 4(12):e8419.
[30]LING F, WEI L, WANG T, et al. Cloning and characterization of the 5′-flanking region of the pig cocaine- and amphetamine-regulated transcript gene[J]. DNA Cell Biol, 2011, 30(2): 91-97.
[31]BARRETT P, DAVIDSON J, MORGAN P. CART gene promoter transcription is regulated by a cyclic adenosine monophosphate response element[J]. Obes Res, 2002, 10(12):1291-1298. |